Precipitation

Winter precipitation

Projected changes for boreal winter (December, January and February) precipitation are presented in *Fig. B.5* as percentage differences from the historical reference period. Under both emission pathways, and all future periods a North-South gradient of the climate change signal is evident. For southern Europe and the northern Mediterranean territories, winter precipitation is expected to change slightly or in-

crease up to 10%-30%. In contrast, for the drier southern parts of the region, winter precipitation, which is more critical for replenishing water resources, is projected to decrease between 20% and 50%. For the Maghreb region, which is a hotspot of drying, the projected winter precipitation decrease could even exceed 60%. The projected changes are higher for the end of the current century and this is likely the case for both pathways under investigation.

WINTER PRECIPITATION CHANGE MID-REF (RCP2.6)

WINTER PRECIPITATION CHANGE END-REF (RCP2.6)

WINTER PRECIPITATION CHANGE NEAR-REF (RCP8.5)

WINTER PRECIPITATION CHANGE MID-REF (RCP8.5)

WINTER PRECIPITATION CHANGE END-REF (RCP8.5)

Figure B.5 | Projected changes in winter (December, January, February) precipitation between the recent past reference period (REF: 1980-1999) and three future sub-periods (NEAR: 2020-2039, MID: 2040-2059, END: 2080-2099), based on the ensemble mean results of the EURO-CORDEX high-resolution simulations for pathways RCP2.6 (left panels) and RCP8.5 (right panels).